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Abstract 3D model alignment is an important step for ap-
plications such as 3D model retrieval and 3D model recogni-
tion. In this paper, we propose a novel Minimum Projection
Area-based (MPA) alignment method for pose normaliza-
tion. Our method finds three principal axes to align a model:
the first principal axis gives the minimum projection area
when we perform an orthographic projection of the model
in the direction parallel to this axis, the second axis is per-
pendicular to the first axis and gives the minimum projection
area, and the third axis is the cross product of the first two
axes. We devise an optimization method based on Particle
Swarm Optimization to efficiently find the axis with mini-
mum projection area. For application in retrieval, we further
perform axis ordering and orientation in order to align sim-
ilar models in similar poses. We have tested MPA on sev-
eral standard databases which include rigid/non-rigid and
open/watertight models. Experimental results demonstrate
that MPA has a good performance in finding alignment axes
which are parallel to the ideal canonical coordinate frame of
models and aligning similar models in similar poses under
different conditions such as model variations, noise, and ini-
tial poses. In addition, it achieves a better 3D model retrieval
performance than several commonly used approaches such
as CPCA, NPCA, and PCA.
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1 Introduction

3D models are created in arbitrary scale, orientation, and
position in 3D space. Therefore, pose normalization of 3D
models is important in many computer graphics applica-
tions such as 3D model retrieval, 3D model recognition, and
3D visualization. The goal of 3D model pose normalization
is to transform a model into a canonical coordinate frame,
where the representation of the model is independent of its
scale, orientation, and position. An ideal canonical coordi-
nate frame of a 3D model is defined as a coordinate frame
whose axes are parallel to the front-back, left-right and top-
bottom directions of the model. The normalization process
includes two steps: alignment and scaling. The important
and difficult step is 3D model alignment, and the traditional
method to deal with this is Principal Component Analysis
(PCA) [7]. To improve the accuracy, various alignment algo-
rithms based on the idea of PCA have been proposed, such
as Continuous PCA (consider the area of each face) [23] and
Normal PCA (consider the normal of each face) [16]. Other
approaches utilize symmetry information [1], virtual contact
area (VCA) [15], or projection area [9, 12].

The existing alignment algorithms, however, still have
room for improvement in terms of the performance in find-
ing alignment axes which are parallel to the ideal canon-
ical coordinate frame and 3D model retrieval. This moti-
vates us to propose a novel 3D alignment algorithm which
finds the alignment axes based on minimum projection area
(MPA). Our proposed algorithm is based on the observation
that many objects have a minimum projection area when we
orthogonally project them in the direction parallel to one of
the axes of the ideal canonical coordinate frame. Based on
experimental results, we find our MPA algorithm can align
most 3D models in terms of axes accuracy (the axes are par-
allel to the ideal canonical coordinate frame). Our alignment
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algorithm can also align similar models in similar poses,
which is important for 3D model retrieval. It is also robust
with respect to model variations, noise, and initial poses.

The rest of this paper is organized as follows. In Sect. 2,
we review the related work in 3D model alignment and
viewpoint selection. In Sect. 3, we present the details of our
MPA alignment algorithm. Extensive experimental results
are shown in Sect. 4. Section 5 discusses the conclusions
and future work.

2 Related work

In this section, we review the related techniques in 3D model
alignment and viewpoint selection.

2.1 3D model alignment

Nowadays, there are several approaches to align a 3D model.
Here, we review four different approaches.

PCA-based approach Principal Component Analysis
(PCA) [7] and Continuous Principal Component Analysis
(CPCA) [23] are two commonly used alignment algorithms.
They utilize the statistical information of vertex coordinates
and extract the three orthogonal components with largest ex-
tent to depict the principal axes of a 3D model. An extension
of the idea of CPCA is Normal Principal Component Analy-
sis (NPCA) [13], which applies CPCA to the normals of the
surface points of a 3D model. The shortcoming of the PCA-
based approach is that the directions of the largest extent are
not necessarily parallel to the axes of the ideal canonical co-
ordinate frame of 3D models. CPCA is generally regarded as
a more stable PCA-based method. However, Papadakis et al.
[13] found that for some models (e.g. car, shovel, hammer,
and plotted plant) CPCA outperforms NPCA, but for some
other models (like plane, chair, gun, and desktop computer)
NPCA has a better alignment performance.

Symmetry-based approach Chaouch and Verroust-Blondet
[1] proposed an approach based on the analysis of the reflec-
tion symmetry property of a 3D model, such as cyclic, dihe-
dral, and rotation symmetries. Podolak et al. [14] developed
a symmetry transform to measure the degree of symmetry of
a 3D model with respect to any candidate symmetry plane.
Tedjokusumo and Kheng Leow [19] developed an alignment
algorithm using bilateral symmetry planes (BSPs) by con-
sidering the 3D aspect ratio of a model. They defined three
BSP axes in an analogous way as PCA [7]: the first BSP
axis has the largest extend in the BSP, the second is perpen-
dicular to the first, and the third is the normal of the BSP.
However, the symmetry-based approach has a limitation in
dealing with models without an apparent symmetry property
or non-symmetrical models.

Optimization-based approach Fu et al. [5] proposed an up-
right alignment algorithm for man-made models. The algo-
rithm first computes the convex hull of a model, then finds
a set of candidate bases, and finally selects the base with
the largest assessment function value as the bottom of the
model. The assessment function is composed of four geo-
metrical properties: static stability, symmetry, parallelism,
and visibility. Random Forest classifier and Support Vec-
tor Machine (SVM) classifier are adopted to train the func-
tion. The upright orientation algorithm achieves around 90%
prediction accuracy in terms of the vertical extent of mod-
els. Martinek and Grosso [11] proposed an optimization and
GPU-based approach to align two 3D models. They con-
structed a model function with respect to the intersection
and union of the projection results of two models.

Projection area-based approach Recently, we noticed that
there are two other papers which use projection area for
alignment. Lian et al. [9] proposed a method that first deter-
mines two sets of candidate axes using PCA and the rectilin-
earity metric. Then, the final alignment axes are decided by
selecting the set of candidate axes which minimizes the sum
of the projected area of silhouettes. Napoléon and Sahbi [12]
presented an alignment method which selects one of three
alignment results (original pose, PCA, and NPCA) that gives
the minimum visual hull, that is minimizes the sum of the
projected areas on the three projection planes. Unlike the
above two methods, our proposed method performs align-
ment by successively selecting two axes with minimum pro-
jection areas. Moreover, we perform a global optimization
search for finding the minimum projection area, and our al-
gorithm does not rely on the PCA-based approach.

2.2 Viewpoint selection

Our proposed MPA alignment is based on minimum pro-
jection area, so it can be considered as a view-based ap-
proach. As such, we also review some viewpoint selection
techniques. The goal of viewpoint selection is to find a set
of representative views to depict a 3D model. Usually, it is
used to select the best views of a 3D model.

Lee et al. [8] defined the idea of mesh saliency for
3D models in terms of Gaussian-weighted mean curva-
tures. Viewpoint selection, one of the applications of mesh
saliency, was demonstrated based on a gradient-descent
search to find the candidate views with local maximums and
a random search algorithm to find the global maximum. Ya-
mauchi et al. [24] proposed a method to find a set of rep-
resentative views for a 3D model by clustering the views
and using mesh saliency [8] to characterize the quality of
a view. Vázquez et al. [20, 21] proposed an information
theory-related measurement called viewpoint entropy to de-
pict the amount of information a view contains, and based
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on this they developed a method to automatically find a set
of best views with top view entropy values. All these view-
point selection techniques can select the best views of 3D
models with respect to their view quality metrics; however,
in general the direction of the best views are not parallel to
the axes of the ideal canonical coordinate frame of 3D mod-
els.

3 Minimum Projection Area-based (MPA) alignment

3.1 Basic idea

Based on its ideal canonical coordinate frame, every 3D
model has six canonical orthographic projection views,
which are front, back, left, right, top, and bottom views,
as shown in Fig. 1. If we only consider the projection area
(the area of the region occupied by the object in the view
images in Fig. 1), then there are only three different canon-
ical views because under orthographic projection, the front
view has the same projection area as the back view, the left
view has the same area as the right view, and the top view
has the same area as the bottom view. We observe that, for
many objects, one of their canonical views (that is, either
front-back view or left-right view or top-bottom view) has
a minimum projection area compared to the other arbitrary
views of the objects. Figure 2 shows two such examples. In
fact, we conduct experiments on several 3D model databases
and verify that the above-mentioned observation is true for
a large number of 3D models.

Fig. 1 Six canonical orthographic projection views of a car model
based on its ideal canonical coordinate frame

Motivated by the above findings, we develop a Minimum
Projection Area-based alignment algorithm (MPA). Our al-
gorithm finds three principal axes of a 3D model which sat-
isfy the following. The first principal axis gives the mini-
mum projection area when we perform an orthographic pro-
jection of the model along (parallel to) this axis, the second
axis is perpendicular to the first axis and gives a minimum
projection area, and the third axis is the cross product of the
first two axes.

3.2 MPA alignment algorithm

Given a 3D model, the set of candidate axes is generated by
using a sphere. A candidate axis is defined as a line which
connects a point on the surface of the sphere and the center
of the sphere. To compute the projection area of this axis,
we perform an orthographic projection of the model in the
direction parallel to the axis and determine the projection
area by counting the number of pixels occupied by the model
in the projection image.

The steps of our MPA alignment are as follows.

Step 1: Find the first principal axis. We sample a set of
points on the surface of the sphere, compute the candidate
axes based on these points, and find the axis with minimum
projection area. To find this axis, we devise an efficient
search algorithm based on the Particle Swarm Optimiza-
tion (PSO) [3] method (see Sect. 3.3).

Step 2: Find the second principal axis. We find the axis
with minimum projection area by sampling on the perime-
ter of a circle which is perpendicular to the first principal
axis. Since this is only a 1D search, we perform a brute-
force search to find the second principal axis by sampling
the perimeter in the range of [0 ◦,180 ◦) and choosing a step
of 1 ◦.

Step 3: Compute the third principal axis. We compute the
third axis as the cross product of the first two principal
axes.
For 3D model retrieval application, the following two steps
are performed to align similar models in similar poses.

Fig. 2 Examples showing that one canonical view of a 3D model usually has the minimum projection area. In each row, the first three images are
the front, left, and top views of a 3D model and the remaining three images are three arbitrary views of the same model. The number underneath
each view is its normalized projection area
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Fig. 3 An example of the alignment process using our MPA algorithm. (b)–(e) Show the intermediate alignment results of the five steps in the
algorithm, respectively

Step 4: Axis ordering. First, we determine the top and bot-
tom orientations of the model by adopting the static sta-
bility metric in upright orientation [5]. We compute six
static stability values of the principal axes (two for each
axis, in the positive and negative directions). The direction
with the largest static stability value is set as the bottom
of the model (the y negative axis of the model) and the
corresponding principal axis is set as the y axis. Then, we
determine the x and z axes based on the variance of the re-
maining two principal axes. The axis with a larger variance
is set as the x axis and the other as the z axis. In order to
compute the variance, we employ a similar method as [23]
by considering the area of each face of the model.

Step 5: Axis orientation. We employ the viewpoint entropy
metric [21] to decide the orientations of the x and z axes.
We render two views of the model from the positive and
negative sides of the x axes (z axes) and select the one
with a larger entropy value as the left side (front part) of
the model.

Figure 3 shows the result at each step of MPA alignment
for a guitar model.

3.3 PSO-based search for minimum projection area

The simplest method to find the axis with minimum pro-
jection area is by performing a brute-force search. We can
uniformly sample a set of points on the surface of the sphere
based on the subdivision of a regular icosahedron which is
denoted as the zero level icosahedron L0. Figure 4 shows
the resulting icosahedrons at different levels of subdivision
by applying the Loop subdivision rule [10] once (L1), twice
(L2), thrice (L3), and four times (L4).

Figure 5 shows the distribution of projection area of two
models in the NIST database [4] using the third level icosa-
hedron L3 for sampling the axes and mapping their projec-
tion areas as colors on the surface of the spheres. The draw-
back of the brute-force search is the high computational cost.
Based on experimental results, we find that in order to get

Fig. 4 Subdivision of an icosahedron. The number in each bracket is
the number of sample points of the corresponding subdivided icosahe-
dron

a result with good accuracy, we have to use at least an L6

icosahedron (40004 sampling points). As such, the brute-
force search is not the ideal method for finding the axis with
minimum projection area.

To find the axis efficiently, we develop a search method
based on PSO [3] which is a global search optimization al-
gorithm. PSO belongs to swarm intelligence optimization
techniques and it imitates the random search actions of a
flock of birds seeking a piece of food in a region. Each bird
adopts the same strategy of searching the surrounding area
of the bird that is nearest to the food, and they learn with
each other and update themselves based on the obtained in-
formation. PSO has been found to be robust and fast in solv-
ing nonlinear and nondifferentiable problems [17].

The steps of our PSO-based search are as follows.

Step 1: Initialization. We initialize the number NP and po-
sitions of a set of search particles and then compute the
private best for each particle and current global best based
on all the private bests. In practice, we use the 42 sample
points in L1 to distribute the search particles. To compute
the private best of a search particle, we consider its �NP /3�
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Fig. 5 Distribution of the projection area of two models. Area is coded
using HSV color model and smooth shading. Red: small area; green:
mid-size area; blue: large area. The yellow bar depicts the sample point
with minimum area

nearest neighboring particles in terms of geodesic distance.
Then, we set the value for the maximum number of search
iteration Nt .

Step 2: Update. We compute the velocity update step s in-
versely proportional to the current iteration number i,

s = Nt − i

Nt

+ c, (1)

where c is a constant variable. We choose c to be 0.5 in our
experiment. Based on the following two equations [17], we
update the new position for each particle as follows.

x(i + 1) = x(i) + s · v(i), (2)

v(i + 1) = ω∗v(i) + c1 · r1 · (xp(i) − x(i)
)

+ c2 · r2 · (xg(i) − x(i)
)
.

(3)

x(i) and v(i) are the position and velocity of a particle;
xp and xg are the positions of private and global bests.
c1 and c2 are non-negative constant numbers, typically
c1 = c2 = 2 [3]; r1 and r2 are random variables between
0 and 1. ω is an inertia-weight to balance the abilities of
global search and local search. A larger ω means more
global search power and less dependency on the initial po-
sitions of the search particles. A smaller ω corresponds to
finer search in a local region. Similarly as in [17], we dy-
namically decrease ω from 1.4 to 0 based on an inversely
proportional function with respect to the iteration num-
ber i:

ω = ωmin − ωmax

Nt

· i + ωmax, (4)

where ωmax (1.4) and ωmin (0) is the maximum and mini-
mum inertia-weight values. The new position x(i + 1) may
not be located on the surface of the sphere, as such we
project it to the surface of the sphere in the direction from
the center to the computed x(i + 1).

Step 3: Evaluation. Based on its new position, for each par-
ticle, we compute the corresponding axis, render the 3D
model, compute the projection area, and update its private
best. Based on all the private bests, we update the global
best.

Step 4: Verification. If the current iteration number has ex-
ceeded Nt , we stop and output the axis which corresponds
to the position of the current global best as the first prin-
cipal axis; otherwise, go to Step 2: Update to continue the
search.

4 Experiments and discussion

To intensively investigate the performance of our MPA
alignment algorithm, we test the MPA algorithm on the fol-
lowing four representative standard databases:

– Princeton Shape Benchmark database (PSB) [18]. It con-
tains 907 general models, classified into 92 classes.

– NIST Generic Shape Benchmark (NIST) [4]. This data-
base is used to overcome several shortcomings or biases
of previous benchmarks, such as different sizes of each
class. It contains 800 models, classified into 40 classes,
20 models each.

– AIM@Shape Watertight Models Benchmark (WMB) [22].
The dataset has 400 watertight models, divided into 20
classes, 20 models each. Some are non-rigid models with
different variations.

– Engineer Shape Benchmark (ESB) [6]. This is a CAD
model database which contains 867 models, which are
classified into 45 classes.

4.1 Evaluation with respect to axes accuracy

Experiments on different types of models, such as general
models in PSB, CAD models in ESB, and non-rigid mod-
els in WMB, demonstrate that our MPA can align most of
them accurately, robustly, and consistently. Some examples
are shown in Fig. 6.

Finding three alignment axes which are parallel to the
ideal canonical coordinate frame is important. Therefore, we
perform axes accuracy experiments on the above-mentioned
four databases and compare MPA with CPCA in terms of
the percentages of the alignment results that have three axes
parallel to the ideal canonical coordinate frame (allow a very
small rotational difference). For a database, we calculate the
average percentage over all the models as well as the per-
centage for each class. Table 1 compares their performances
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Fig. 6 Example alignment results for different types of models using our MPA alignment algorithm

Table 1 Comparison of the axes accuracy performances in terms of models and classes using MPA and CPCA on the PSB, NIST, WMB, and ESB
databases. RCPCA and RMPA are the average performance over all the models in a database. � is the performance difference value of subtracting
MPA’s axes accuracy percentage by CPCA’s for one class. � ≥ 20: MPA is much better than CPCA; 20 > � > 0: MPA is better than CPCA;
� = 0: MPA is the same as CPCA; and vice versa

Databases #(models) RCPCA RMPA #(classes) � ≥ 20 20 > � > 0 � = 0 0 > � > −20 � ≤ −20

PSB 907 632 (69.7%) 804 (88.6%) 92 41 (44.6%) 8 (8.7%) 29 (31.5%) 6 (6.5%) 8 (8.7%)

NIST 800 652 (81.5%) 695 (86.9%) 40 5 (12.5%) 16 (40.0%) 12 (30.0%) 6 (15.0%) 1 (2.5%)

WMB 400 270 (67.5%) 327 (81.8%) 20 6 (30.0%) 8 (40.0%) 3 (15.0%) 1 (5.0%) 2 (10%)

ESB 867 657 (76.1%) 744 (86.2%) 45 15 (33.3%) 10 (22.2%) 15 (33.3%) 4 (8.9%) 1 (2.2%)

Fig. 7 Examples indicating that
our MPA algorithm achieves
better alignment results than
CPCA

and Table 2 lists the classes in which MPA achieves a much
better performance than CPCA on the PSB database.

As shown in Table 1, our MPA approach achieves appar-
ently better overall performance than CPCA. MPA is better
than CPCA in aligning 53.3% classes for PSB, and 52.5%,
70.0%, 55.5% for NIST, WMB, and ESB, respectively. Con-
versely, the percentages for the cases in which CPCA out-
performs MPA are much smaller (15.2%, 17.5%, 15%, and
11.1%, respectively). MPA has a much better performance
(the surpassing percentage difference is more than 20) in
aligning the listed 41 classes of PSB models in Table 2,
especially for box-like shapes, such as desktop computer,
computer monitor, school desk, and church. Figure 7 shows
some examples which demonstrate that MPA can find more
accurate axes than CPCA.

For certain models, MPA cannot find accurate axes, and
usually there exists some small rotational differences. The
reason for these differences is that a small rotation from the
accurate axes will make the projection area even smaller.
These types of classes include dog, desk chair, potted plant,
barren tree, conical tree, handgun, and fireplace. Some
alignment results for these classes are shown in Fig. 8. Nev-
ertheless, we can see that, even if the axes found are not
the perfect ones, their alignment results are still consistent
among the models in the same class, which is important for
applications, such as 3D model retrieval.

4.2 Evaluation with respect to robustness

In this section, we test the robustness properties of MPA
with respect to model variations, noise, and initial poses
as well as the convergence of PSO with respect to iteration
number.

(1) Robustness to model variations. The basic requirement
for alignment in applications such as 3D model retrieval
and recognition is to align similar models in a similar
way under different conditions such as variations and
deformations. For this purpose, we investigate the align-
ment performance on non-rigid models with different
variations, for example, hand, teddy, and head models in
the previously mentioned four databases. Some example
alignment results for these types of models in the WMB
database are shown in Fig. 9. The first nine models are
examples of deformable models. We can also see that
the head models with different variations are aligned
consistently, such as the three similar head models look-
ing to the front and the other three similar head models
looking to the left.

(2) Robustness to noise. 3D models may have noise due to
storage, transmission, and modification. A 3D model
alignment algorithm should be insensitive to small
amounts of noise. We test the robustness of our MPA
algorithm against noise by randomly adding a small
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Table 2 List of the 41 classes of PSB in which MPA achieves a much
better performance than CPCA in terms of axes accuracy percentage

Class # CPCA MPA

Helicopter 18 77.8 100.0

Enterprise spaceship 11 36.4 100.0

Dog 7 00.0 57.1

Horse 6 16.7 50.0

Rabbit 4 00.0 75.0

Snake 4 25.0 75.0

Head 16 62.5 93.8

Skull 6 00.0 66.7

Barn 5 40.0 100.0

Church 4 00.0 100.0

Gazebo 4 80.0 100.0

One story building 14 35.7 100.0

Skyscraper 5 80.0 100.0

Two story building 10 10.0 100.0

Chess set 9 66.7 100.0

City 8 37.5 75.0

Desktop computer 11 00.0 100.0

Computer monitor 13 00.0 100.0

Eyeglasses 7 71.4 100.0

Fireplace 6 00.0 33.3

Cabinet 9 66.7 100.0

School desk 4 00.0 100.0

Bench seat 11 00.0 45.5

Dining chair 11 00.0 90.9

Desk chair 15 00.0 20.0

Shelves 13 76.9 100.0

Rectangular table 25 72.0 100.0

Single leg table 6 66.7 100.0

Handgun 10 00.0 40.0

Ladder 4 50.0 100.0

Streetlight lamp 8 75.0 100.0

Mailbox 7 14.3 85.7

Potted plant 26 53.8 88.5

Satellite 4 25.0 50.0

Large sail boat 6 00.0 50.0

Sink 4 25.0 100.0

Slot machine 4 25.0 100.0

Hammer 4 75.0 100.0

Covered wagon 5 00.0 100.0

Semi vehicle 7 14.3 100.0

Train car 5 40.0 100.0

amount of displacement to the vertices of a 3D model.
Figure 10 shows that MPA has a good robustness prop-
erty against a small amount of noise. This is contributed
to our utilization of projection area for aligning a 3D

model since in general projection area is stable under
small changes of the vertices’ coordinates.

(3) Robustness to initial poses. 3D models may have arbi-
trary initial poses. It is important for our alignment algo-
rithm to align a model with different initial poses to the
same pose. Figure 11 illustrates three sets of examples
indicating MPA’s robustness to initial poses. As can be
seen, MPA is not dependent on the initial poses of a 3D
model, and only a very small difference exists among
the minimum area found. MPA is independent of ini-
tial poses because we adopt the global optimization ap-
proach PSO to find the first principal axis with minimum
projection area. In the initial stage of the search, it uses
a global search to avoid local minimums and then en-
hances the local search ability to find an as accurate as
possible global minimum projection area.

(4) Evaluation with respect to PSO’s iteration number. In
PSO, the number of iterations is an important factor
which influences the accuracy and search time. To test
the influence of iteration number on the alignment re-
sults, we apply MPA using different iteration numbers
to find the first principal axis. Figure 12 shows the re-
sults. We find that after 11 iterations the area converges
to about 0.291 and we achieve the best results, which are
below 0.2913 at 30–40 iterations. We also find that the
convergence speed is fast. Usually after 10 iterations,
MPA already finds an area which is close to the opti-
mal one. For the same accuracy as PSO, the brute-force
method needs a much longer time. For example, MPA
based on 10 iterations finds smaller area than the brute-
force method using an L4 icosahedron (1281 vertices)
for axis sampling; MPA needs about 8 seconds while the
brute-force method takes about 43 seconds. Based on 40
iterations, MPA finds a smaller area than the brute-force
method based on the L6 icosahedron (40004 vertices);
MPA averagely needs 46 seconds and the brute-force
method needs 530 seconds for the PSB models.

4.3 Evaluation with respect to retrieval performance

In this section, we evaluate MPA in terms of retrieval perfor-
mance improvement on a rotation-dependent shape descrip-
tor by comparing the retrieval performances when using
different alignment methods such as PCA, NPCA, CPCA,
and our MPA. For the selection of a rotation-dependent
shape descriptor, we choose to modify the Light Field de-
scriptor [2], which is a famous and typical shape descrip-
tor. The distance of two models is defined as the minimum
distance between 10 corresponding views of the two mod-
els. The Light Field descriptor adopts an integrated image
shape descriptor which contains 35 Zernike moments and 10
Fourier descriptors and uses an L1 distance metric to mea-
sure the differences. To find the minimum distance between
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Fig. 8 Examples showing that the alignment results of our MPA algorithm are still consistent within classes even if the result axes are not the
perfect ones

Fig. 9 Examples indicating MPA can align similar models in similar poses

Table 3 Comparison of retrieval performance among our MPA and
three other alignment algorithms based on the modified-LF shape de-
scriptor

Methods NN FT ST DCG AP

PSB

MPA 60.4 33.5 43.2 0.603 50.5

CPCA 58.7 32.8 42.6 0.597 49.8

NPCA 57.8 32.3 41.6 0.596 49.3

PCA 58.4 31.1 40.7 0.586 48.3

NIST

MPA 83.5 42.2 55.2 0.745 53.8

CPCA 81.3 41.5 53.7 0.734 52.7

NPCA 81.1 38.2 49.9 0.724 49.9

PCA 77.3 39.2 50.4 0.710 49.7

WMB

MPA 89.5 46.7 59.8 0.783 59.7

CPCA 84.8 44.6 58.8 0.765 57.6

NPCA 86.3 44.2 57.5 0.765 56.5

PCA 85.5 44.2 59.0 0.764 57.1

two models, the original Light Field approach performs an
alignment process by rotating a camera system of 20 cam-
eras set on the vertices of a regular dodecahedron. We mod-
ify this original Light Field descriptor by replacing its inter-
nal alignment process with an explicit alignment step using
PCA, NPCA, CPCA, or our MPA, and we name it modified-
LF.

To perform a comprehensive evaluation for 3D model
retrieval performance, we employ five metrics including
Nearest Neighbor (NN), First Tier (FT), Second Tier (ST),
Discounted Cumulative Gain (DCG) [18], and Average

Fig. 10 Examples indicating MPA’s robustness to noise. (a) The view
from the first principal axis with minimum projection area for the origi-
nal bicycle model, (b)–(d): the views from the first principal axis of the
bicycle model when we added noise by randomly moving each vertex
with a small displacement vector whose norm is bounded by 0.12%,
0.25%, and 1% of the diameter of the model’s bounding box, respec-
tively. The number underneath each view is its normalized projection
area

Precision (AP). NN measures the percentage of the clos-
est matches that are relevant models. FT/ST is the per-
centage of a class that has been retrieved among the top
(C − 1)/2(C − 1) list, where C is the cardinality of the rel-
evant class of the query model. DCG measures the accuracy
of the retrieval list using the summed weighted value related
to the positions of the relevant models. AP is used to mea-
sure the overall performance averaged over all the models.

We tested the modified-LF retrieval algorithm on the
PSB, NIST, and WMB databases using the above-mentioned
different alignment algorithms. Table 3 compares their per-
formances. Compared with PCA, NPCA, and CPCA, our
MPA achieves better performances in all the five perfor-
mance metrics. The main reason for the improvement is our
achieving a higher percentage of consistent alignment re-
sults for models belonging to the same class.
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Fig. 11 Three sets of examples indicating MPA’s robustness to initial poses. PSO is used to search for the first principal axis. The second row
shows the corresponding views from the first principal axis for the models in the first row. The rotated views are only due to different up-vectors
of the cameras during rendering. Note that we get the same final alignment results for each set of models. The number underneath each view is its
normalized projection area

Fig. 12 Examples showing MPA’s first principal axis results based on PSO’s iteration number. (b)–(h): the axes with minimum projection area
based on the iteration numbers displayed in the upper right corner. The rotated views are due to different up-vectors of cameras during rendering.
The number underneath is the normalized projection area

4.4 Limitations of MPA

As shown in the previous experiments, MPA has a good per-
formance in 3D model alignment. Nevertheless, it has some
limitations. Firstly, it does not work well for certain types
of models which do not have normalized poses with mini-
mum projection areas. Some examples are shown in Fig. 8.
Secondly, though in general the axes found are accurate, we
cannot guarantee a perfect alignment for all models, that is
the z+, x+ and y+ axes correspond to the front, left, and
top parts of a model, respectively. This is because we do
not consider the semantics information of models during the
alignment. Although we already utilize the static stability
and view entropy, our approach still lacks the semantics in-
formation for deciding the perfect axes orientations for all
3D models.

5 Conclusions and future work

A novel Minimum Projection Area-based alignment ap-
proach (MPA) for 3D model pose normalization was pro-
posed in this paper. It is based on the idea of finding two
perpendicular principal axes with minimum projection area.
PSO was employed to efficiently find the axis with min-
imum projection area. Three evaluation experiments were
conducted: (1) accuracy in terms of finding three axes which
are parallel to the axes of the ideal canonical coordinate

frame of a 3D model; (2) robustness of results with respect
to model variations, noise, initial poses, and PSO iteration
number; and (3) 3D model retrieval performance using a
rotation-dependent shape descriptor. All three experiments
demonstrated the ability of our MPA approach to find a con-
sistent pose for similar models. Experimental results showed
that our MPA algorithm achieves a better performance com-
pared to PCA, CPCA, and NPCA in terms of axes accuracy
and 3D model retrieval.

Regarding the limitations of MPA, we think it can be im-
proved by combining other types of features, such as sym-
metry, with projection area when searching for the principal
axes. We would like to investigate this further. Another pos-
sible future work is to perform semantics analysis for axis
ordering with the ultimate goal of achieving perfect align-
ment.
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